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Abstract

Turbulent flow past two circular cylinders of different diameters is numerically investigated. The two-dimensional

Reynolds-averaged Navier–Stokes equations are solved by using a finite element method with a k–o turbulence closure.

Following a relevant numerical model validation process, effects of cylinder gap-to-diameter ratio, the angular position

of the smaller cylinder and the diameter ratio of cylinders on the vortex shedding and the forces on the cylinders are

investigated using the numerical model. It is found that the relative position of the small cylinder has significant effects

on the hydrodynamic force and vortex shedding characteristics of the cylinders.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Flow around two cylinders of different diameters has close relevance to flow around a piggyback pipeline in offshore

oil and gas explorations. A piggyback pipeline normally comprises of one (or more) small pipe (or pipes) and a large

pipe. The diameter ratio of the small pipe to the large pipe is often in the range of 0.1–0.5. The small and the large pipes

are often strapped together to form a pipeline bundle. Pipes in a bundle could either be in contact or separate,

depending on design and installation requirements. Design of such pipeline bundles requires the evaluation of

hydrodynamic forces acting on the bundle. Due to the lack of reliable hydrodynamic data on such pipeline bundles, it is

often done to approximate a bundle of pipelines as a single pipeline of an equivalent diameter (equals to the sum of the

two diameters and the gap between the two cylinders) in calculating the hydrodynamic forces. Such an approximation

has not been adequately validated.

There has not been extensive research on flow around two cylinders of different diameters. Most of the reported

studies on two-cylinder configurations were concerned with two cylinders of an identical diameter [e.g., Zdravkovich

(1977, 1987), Bearman and Wadcock (1973), Williamson (1985), Meneghini et al. (2001)]. Strykowski and Sreenivasan

(1990) investigated the suppression of vortex shedding from a circular cylinder by introducing a small circular cylinder

at low Reynolds numbers. Sakamoto et al. (1991) and Sakamoto and Haniu (1994) studied the suppression of

hydrodynamic forces acting on a square cylinder and a circular cylinder, respectively, in the sub-critical Reynolds

number regime. Dalton et al. (2001) simulated the suppression of lift force on a circular cylinder by a small cylinder.
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The diameter ratio of the small cylinder to the large cylinder in the above-mentioned studies was quite small in

comparison with typical diameter ratios used in offshore industry for pipelines.

Recently, Zhao et al. (2005) carried out a numerical study of flow around two cylinders of different diameters at a

relatively low Reynolds number (500 based on the diameter of the large cylinder). The effects of the small cylinder on

the flow around and forces on the two cylinders were investigated for different gap ratios and position angles for a

diameter ratio of 0.25. Since the study was carried out at a rather low Reynolds number, the application of the results

by Zhao et al. (2005) to practical engineering problems (Reynolds number often ranging from 104 to 106) is not

straightforward.

The aim of this study is to extend the study by Zhao et al. (2005) to a higher Reynolds number (5� 104). The two-

dimensional Reynolds-averaged Navier–Stokes equations are solved using a finite element method with a k–o
turbulence closure. The numerical model developed in this study is firstly validated against the experimental results

reported in the literature (Tsutsui et al., 1997). Then, the effect of the position angle of the small cylinder on the

hydrodynamic forces and vortex shedding frequency is studied for a diameter ratio of 0.5 between the small cylinder

diameter (d) and the large cylinder diameter (D). The position angle of the small cylinder examined ranges from 0 to

1801 and the gaps between the two cylinders (G) are 0.05D, 0.1D, 0.2D and 0.4D. The effects of the diameter ratio on the

shedding flow are also studied. Computations are carried out for d/D ranging from 0.1 to 1.0 at constant position angle

of the small cylinder of 901.
2. Governing equations

A typical two pipe piggyback pipeline configuration considered in this study is sketched in Fig. 1. The small cylinder

represents the small pipeline and the large cylinder represents the large pipeline. The position of the small cylinder

relative to the large one is uniquely defined by the gap between the two cylinders G and the angle a as shown in Fig. 1.

In Fig. 1, a steady uniform flow approaches the cylinders from the negative direction of the x-axis, and y is positive in

the clockwise direction, starting from the front point of the cylinder.

The governing equations are the two-dimensional incompressible Reynolds-averaged Navier–Stokes equations and

the continuity equation. The nondimensional equations in the Cartesian coordinate system can be written as

qui

qt
þ uj

qui

qxj

¼ �
q
qxi

pþ
2

3
k

� �
þ

q
qxj

1

Re

qui

qxj

þ 2ntSij

� �
, (1)

qui

qxi

¼ 0, (2)
D

d

G

x

y

Inflow

Small
cylinder

Large cylinder

�

�

Fig. 1. Definition sketch.
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Table 1

Model constants for the high Reynolds number k–o model

s* s b* b g g*

0.5 0.5 0.09 0.075 0.553 1.0
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where xi (i ¼ 1 and 2) is the Cartesian coordinate, ui is the velocity component, p is the pressure, k is the turbulent

kinetic energy, Re ( ¼ UD/n) is the Reynolds number defined by the free stream velocity U and the large cylinder

diameter D; n is the molecular kinetic viscosity, t is time, Sij is the mean strain rate tensor which is defined as

Sij ¼
1

2

qui

qxj

þ
quj

qxi

� �
. (3)

The k–o two-equation model (Wilcox, 1988, 1994) is used to determine the turbulent kinetic energy k and the

turbulent viscosity nt in this study. The equations for k and o are expressed as
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where o ¼ �=ðb�kÞ is the specific dissipation of turbulent kinetic energy, e is the dissipation of turbulent kinetic energy,

Pk ¼ 2ntSijðqui

�
qxjÞ is the turbulent kinetic energy production. The eddy viscosity nt in the k–o model is calculated as

nt ¼ g�
k

o
. (6)

The model closure coefficients in Eqs. (4)–(6) for high Reynolds number are listed in Table 1.
3. Numerical method

The governing equations are discretized by a Galerkin finite element method in space. It is known that the

conventional Galerkin discretization is equivalent to the central-difference approximation in finite difference method.

Numerical instabilities often occur in central-difference solutions of the convective-diffusive equations because central-

difference discretization has negative artificial diffusion. In this study, a streamline upwind scheme is applied by

introducing an artificial diffusion term to the momentum equations. It should be noted that the artificial diffusion

actually acts as a ‘balancing diffusion’ that balances the negative diffusion of the Galerkin treatment (Kelly et al., 1980;

Brooks and Hughes, 1982). This streamline upwind method had been successfully applied in solving incompressible

flow problems (Selvam, 1997; Jester and Kallinderis, 2003). The diffusion term added in the momentum equations is as

(Brooks and Hughes, 1982)

~k
q
qxk

u0ju
0
k

qui

qxj

� �
, (7)

where u0i ¼ ui= uk k with uk k being the magnitude of the velocity defined as uk k2 ¼ uiui, the parameter ~k is defined as

(Brooks and Hughes, 1982; Jester and Kallinderis, 2003)

~k ¼ ~x uek khe=2, (8)

~x ¼
Reh=3; Rehp3;

1; Reh43;

(
(9)

in which uek k is the magnitude of the velocity at the centroid of the element, he is the average edge length of the element,

Rehð¼ uek khe=nÞ is the cell Reynolds number. The streamline upwind scheme is also applied in the solution procedures

for the k and o equations.

A fractional step formulation is applied for the time integration of the momentum equation (Eq. (1)) (Meling and

Dalherim, 1997; Meneghini et al., 2001). First, an intermediate velocity is computed by neglecting the pressure gradient
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terms. The pressure field is then calculated by solving the pressure Poisson equation. The final velocity is computed by

including the pressure effect. In this study the streamline upwind scheme is applied in the computational procedure of

the intermediate velocity. During a time increment from t ¼ nDt to (n+1)Dt, with Dt being the computational time step,

the algorithm of the time advancement scheme for the equations is as follows:
(i)
 Compute the intermediate velocity ~unþ1
i at time t ¼ (n+1)Dt by solving the momentum equations without pressure

terms. The diffusion terms are considered implicitly and the convection terms are considered explicitly from the previous

time step. The turbulent viscosity at the time level nDt is used in calculating the velocity components and the turbulent

quantities. The parameter ~k is also evaluated at the time level nDt. The equation for computing ~unþ1
i is as follows:
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where the last term of the left-hand side of Eq. (10) is the artificial diffusive term.
(ii)
 The intermediate velocity field does not, in general, satisfy the continuity equation. The pressure at the time

t ¼ (n+1)Dt is computed to enforce the continuity in the final velocity field. The pressure is computed by solving

the following pressure Poisson equation (can be obtained by substituting Eq. (12) into the continuity Eq. (2)),

q2Pnþ1

qxjqxj

¼
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q ~unþ1
j

qxj

, (11)

where P ¼ pþ 2
3

k.
(iii)
 The final velocity is calculated by including the pressure terms
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i ¼ ~unþ1

i � Dt
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. (12)
(iv)
 After the final velocity components at the time (n+1)Dt are obtained, knþ1 and onþ1 are calculated by

knþ1
� Dt

q
qxj

nþ s�nn
t

� � qknþ1

qxj

� �
� Dt ~k

q
qxk

unþ1
j unþ1

k

qknþ1

qxj

� �

¼ kn
þ Dt �unþ1

j

qkn

@xj

þ Pn
k � b�onkn

� �
, ð13Þ

onþ1 � Dt
q
qxj

nþ snn
t

� � qonþ1

qxj

� �
� Dt ~k

q
qxk

unþ1
j unþ1

k

qonþ1

qxj

� �

¼ on þ Dt �unþ1
j

qon

qxj

þ
gon

kn Pn
k � b onð Þ

2

� �
. ð14Þ
In Eqs. (13) and (14), the parameter ~k is evaluated at the time level (n+1)Dt because the velocity at the time (n+1)Dt

has been obtained. However, the Pk is still evaluated at time level nDt because the turbulent viscosity at the the time

level (n+1)Dt is still unknown. The computational domain X is divided into linear finite elements. The velocity

components, pressure and the turbulence quantities in an element can be approximated as

ui � NUi; P � NP; k � NK; o � NX, (15)

where N is the shape function vector, Ui, P, K and X represent the nodal values of ui, P, k and o, respectively. By
selecting the shape function as the weighting function and applying a weighted residual formulation to Eqs. (10)–(14),

one can obtains the following set of matrix equations:

Mþ DtðDn þDn
uÞ

	 

~U

nþ1

i ¼MUn
i þ DtCnUn

i , (16)

SPnþ1 ¼ �
1

Dt
Ai
~U

nþ1

i , (17)

MUnþ1
i ¼M ~U

nþ1

i � DtAiP
nþ1, (18)

Mþ DtðDnþ1 þDn
kÞ

	 

Knþ1 ¼MKn þ Dt Cnþ1Kn þ Fn

k

� �
, (19)

Mþ DtðDnþ1 þDn
oÞ

	 

Xnþ1 ¼MXn þ Dt Cnþ1Xn þ Fn

o

� �
, (20)



ARTICLE IN PRESS
M. Zhao et al. / Journal of Fluids and Structures 23 (2007) 59–83 63
where
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Boundary integrations are not included in Eqs. (16)–(20) because they are replaced by the implementation of the

boundary conditions on the boundaries of the computation domain. At the inflow boundary, a uniform

nondimensional horizontal velocity distribution and zero transverse velocity are specified. The boundary conditions

for the turbulent quantities are (Menter, 1993; Guilmineau and Queutey, 2004) o1 ¼ 1, nt1 ¼ 10�3, k1 ¼ o1nt1. At

the cylinder surfaces, the logarithmic wall function is used (Brørs, 1999; Liang and Cheng, 2005). The first mesh node

from the wall is set some distance ðD1Þ away from the cylinder surface. The gap between the cylinder surface and the

mesh is bridged by the following logarithmic wall function:

uT ðyÞ

u�
¼

yu�

n
;

yu�

n
p11:63;

1

k
ln 9

yu�

n

� �
;

yu�

n
411:63;

8>><
>>: (21)

where uT ðyÞ is the velocity tangential to the cylinder surface, y is the distance from the wall, u� is the friction velocity

and k is the von Karman constant ( ¼ 0.42). In this study the distance between the mesh and the cylinder is set to be 0.5

times the mesh size in the normal direction of the boundary. The turbulent quantities at the wall boundary are specified

as k ¼ C1=2
m u2� and o ¼ k1=2=ðb�1=4kD1Þ. At the two lateral boundaries, the transverse velocity component is set to be

zero and a zero normal gradient condition is applied for all other quantities. At the outflow boundary, zero normal

gradient of velocity, pressure and turbulence quantities are implemented. On the other boundaries, the pressure is

obtained by applying the momentum equations in the direction normal to the boundaries.

The computational procedure can be briefly summarized as: (i) calculate the intermediate velocity according to

Eq. (16); (ii) solve the pressure equation (Eq. (17)); (iii) calculate the final velocity by solving Eq. (18); (iv) calculate the

turbulent quantities k and o (Eqs. (19) and (20)); (v) calculate the turbulent viscosity according to Eq. (6); (vi) return to

step (1) and repeat the procedure till the flow is fully developed.
4. Numerical results

4.1. Validation of the model

The computational model developed in this study is verified against uniform flow around an isolated single cylinder

and uniform flow around two cylinders where independent experimental data are available. In the single cylinder case,

the computational domain is divided into four-node linear finite elements. Calculations are carried out based on four

meshes with different density (as shown in Table 2) in order to investigate the mesh dependence of the model. The mesh

with medium density is shown in Fig. 2. The mesh quality for other meshes in Table 2 is similar to that given in Fig. 2

but with different mesh densities. The Reynolds number for the single cylinder case is Re ¼ 4.1� 104. The

computational time step is the same for all of the meshes and is taken as Dt ¼ 0.002.

The distributions of time-averaged pressure coefficient ðC̄pÞ along the cylinder surface from the four meshes in Table

2 are plotted in Fig. 3. The Cp in Fig. 3 is defined as Cp ¼ ðp� paÞ=ðrU2=2Þ, with pa being the pressure at the stagnation

point of the cylinder and r being the fluid density. It can be seen that the pressure coefficient for fine mesh and that for

finest mesh are almost identical. The predicted mean drag coefficient ðC̄DÞ, the root-mean-square (r.m.s.) lift coefficient

ðC0LÞ and the Strouhal number St are compared with the experimental data by Schewe (1983) and the numerical results



ARTICLE IN PRESS

Fig. 2. Medium mesh for uniform past a single cylinder.

Table 2

Mesh properties for single cylinder case

Mesh density Number of circumferential nodes Grid size near the cylinder Number of nodes in the mesh

Coarse 80 0.002 8155

Medium 120 0.0015 11920

Fine 160 0.001 13550

Finest 180 0.00075 15890

0 45 90 135 180
θ (degree)

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

C
P

Corse mesh

Medium mesh

Fine mesh

Finest mesh

Fig. 3. Distribution of time-averaged pressure coefficient along the cylinder surface (Re ¼ 4.1� 104).

Table 3

Comparison of the force coefficient and Strouhal number (Re ¼ 4.1� 104)

Cases Mean drag ðC̄DÞ R.m.s. lift ðC0LÞ Strouhal number (St)

Coarse 1.002 0.472 0.220

Medium 1.044 0.596 0.220

Fine 1.068 0.655 0.217

Finest 1.078 0.667 0.211

Schewe (1983) (Re ¼ 1–4� 104) 1.15 0.35 0.20

Tsutsui et al. (1997) (Re ¼ 4.1� 104) 1.21 0.246

M. Zhao et al. / Journal of Fluids and Structures 23 (2007) 59–8364
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by Tsutsui et al. (1997) in Table 3. It can be seen that the present numerical results are almost mesh-independent on the

fine mesh. The force coefficient and the Strouhal number change little when the mesh changes from the fine to the finest.

The predicted mean drag coefficient and the Strouhal number agree well with the corresponding experimental values by

Schewe (1983). The predicted r.m.s. lift coefficient ðC0LÞ of fine mesh is 0.655, which is larger than the measured value of

0.35 by Schewe (1983). However, the measured r.m.s. lift coefficient by So and Savkar, 1981 is around 1.0, which is

larger than that computed in this study. It is stated (Tadrist et al., 1990; Lam et al., 2003) that the measured fluctuating

forces are considerably affected by many factors, such as aspect ratio, blockage, turbulence intensity, tube end

boundaries, etc. In all of the following study the mesh density around the cylinder surface is kept the same as the fine

mesh of the single cylinder case.

Flow around two cylinders of different diameters is also simulated as a part of the validation of the present model.

The cases investigated by Tsutsui et al. (1997) have a diameter ratio d/D of 0.45. The gap ratio between the two

cylinders G/D is 0.0625. The Reynolds number based on the large cylinder diameter is Re ¼ 4.1� 104 and the Reynolds

number based on the small cylinder is 1.845� 104. The position angle a (defined in Fig. 1) ranges from 901 to 1801 in the

study by Tsutsui et al. (1997).

A rectangular computational domain with a length (in the flow direction) of 28D and a width of 16D is applied in the

present study. This domain size was determined by a domain-size independence study. The centre of the large cylinder is

located at 8D away from the inlet boundary and in the centre-line of the domain in the transverse direction. Fig. 4

shows the mesh near the cylinder for a typical case of a ¼ 1301. The computational domain is discretized by 18 254

nodal points in the case of a ¼ 1301. The perimeters of the large and small cylinders are discretized by 160 and 80 nodal

points, respectively. The nondimensional element size in the radial direction next to the cylinders is around 0.001. The

mesh characteristics near the cylinders for other cases investigated in this study are very similar to the case shown in

Fig. 4. The nondimensional computational time step is 0.002 and the computation time is 250 for the two-cylinder cases.

Fig. 5 shows the comparison of the experimental and predicted distributions of mean pressure coefficient ðC0PÞ around

the perimeter of large cylinder for cases of a ¼ 901, 1201 and 1601. The pressure coefficient in Fig. 5 is defined by

Cp ¼ ðp� p1Þ=ðrU2=2Þ, where pN is the pressure at the inlet. The numerical results by Tsutsui et al. (1997) are also

included in the figures for the purpose of comparison. It can be seen from Fig. 5 that the predicted pressure distributions

generally agree well with the experimental data and the numerical results of Tsutsui et al. (1997). However, obvious

differences between the predicted and measured pressure distributions exist at around y ¼ �801 and 901, as can be seen

from Fig. 5. Those locations seem to correspond to the locations of flow separation on the cylinder surface as the

pressure gradient changes sign at those locations. Fig. 6 shows the comparison of the pressure coefficient distributions

around the small cylinder for a ¼ 901, 1201 and 1601. For the case of a ¼ 901, the front stagnation point on the small

cylinder is located at around y ¼ �301. This is because the incoming flow for the small cylinder is oblique to the x-axis.

For the case of a ¼ 1601, the pressure coefficient on the small cylinder is almost a constant, because the small cylinder is

immersed in the wake of the large cylinder. It is seen from Figs. 5 and 6 that the present numerical results agree slightly

better with the experimental results than those by Tsutsui et al. (1997), especially at the rear of the large cylinder. This is

likely because of the finer grid resolution used in this study.

Figs. 7 and 8 show the comparisons of the predicted and measured mean drag and mean lift coefficients on the large

cylinder and those on the small cylinder, respectively, for different values of a. It can be seen that the present numerical

results agree reasonably well with the experimental data. The dependence of the drag and lift coefficients on the position

angle a is well captured by the numerical model. The computed mean drag coefficient on the large and small cylinders is

slightly smaller than its measured counterpart while the computed mean lift coefficient is slightly larger than its

measured counterpart for almost all the position angles investigated in this study. Fig. 9 shows the comparison of the

predicted and measured values of Strouhal number. The Strouhal number is obtained by Fourier transforming the total

lift on the cylinder bundle. The experiments conducted by Tsutsui et al. (1997) detected two distinct values of Strouhal

number corresponding to a single value of position angle a when a is between 901 and 1301. It was stated (Tsutsui et al.,

1997) that the lower values of the pairs correspond to the so-called reattachment state (as will be discussed in the next

section). The same phenomenon was also observed in the present numerical study in the region of a ¼ 901–1201. It can

be seen from Fig. 9 that the higher values of the pairs agree well with the measured data, whereas the lower values of the

pairs are smaller than those measured.

4.2. Effects of position angle a and gap ratio G/D

The effects of the gap ratio and position angle of the small cylinder on the vortex shedding from the two cylinders and

the forces on the two cylinders are studied by a series of numerical tests. The numerical tests were conducted for a

diameter ratio of d/D ¼ 0.5, the large cylinder Reynolds number of 5� 104 and gap ratio of 0.05, 0.1, 0.2, 0.4 and N.

The small cylinder Reynolds number is 2.5� 104. The position angle of the small cylinder (a) ranges from 01 to 1801
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Fig. 5. Mean pressure coefficient distributions along the large cylinder (Re ¼ 4.1� 104): J, experimental (Tsutsui et al., 1997); - - - - -,

numerical (Tsutsui et al., 1997); ——, present.

Fig. 4. A typical computational mesh near the cylinders (G/D ¼ 0.1, d/D ¼ 0.45, a ¼ 1301).
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with an interval of 22.51. The computed fluctuating force coefficients and the Strouhal number are compared with those

of a single isolated cylinder at the same Reynolds number. The perimeters of the large and small cylinders are

discretized by 160 and 80 nodal points, respectively. The mesh quality in this section is similar to that shown in Fig. 4.

The computational time step is set to be 0.002. The force coefficients on an isolated single cylinder in a uniform flow at

Re ¼ 5� 104 and 2.5� 104 are calculated for the purpose of comparison. In the singular cylinder calculation, the

cylinder perimeter is discretized using 160 nodal points for Re ¼ 5� 104 and 80 nodal points for Re ¼ 2.5� 104 in order

to ensure that the mesh has the same density as in the dual cylinder case. The computed force coefficients and the

Strouhal numbers are listed in Table 4. It can be seen from Table 4 that the differences between the results for

Re ¼ 5� 104 and 2.5� 104 are insignificant.
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Fig. 6. Mean pressure coefficient distributions along the small cylinder (Re ¼ 1.845� 104): J, experimental (Tsutsui et al., 1997);

- - - - -, numerical (Tsutsui et al., 1997); ——, present.
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4.2.1. Force coefficients

Fig. 10 shows the variation of mean force coefficients on the large cylinder and those on the small cylinder. It can be

seen that the mean drag coefficient on the large cylinder attains its maximum value when the two cylinders are in near

side-by-side arrangement (a is around 901) for all values of G/D. The maximum mean drag on the large cylinder

increases with the decrease of G/D. The drag on the large cylinder for G/D ¼ 0.05 and a ¼ 901 is about 1.5 times that on

a single isolated cylinder. The drag increase for the near side-by-side arrangements (a is around 901) is mainly caused by

the increases of the stagnation pressure and the high-pressure area in front of the cylinder. This can be seen clearly by

examining the mean pressure distributions on the surface of the large cylinder given in Fig. 17. The mean drag on the

large cylinder is smaller than its single cylinder counterpart when the two cylinders are in near tandem arrangements

(01oao451 and 1351oao1801). The drag reduction is mainly caused by the combination of a decrease in the

stagnation pressure and an increase of the base pressure of the large cylinder (see Fig. 17), when the small cylinder is

placed in front of the stagnation point of the large cylinder (a is around 01). The drag reduction is mainly induced by the

increase of base pressure of the large cylinder (see Fig. 17) when the small cylinder is placed in the wake region of the

large cylinder (a is around 1801). The base pressure increase of the large cylinder for the near tandem arrangements is

due to the disturbances of the small cylinder to the formation of the upper shear layer of the large cylinder (a is around

01) and the interactions of the shear layers of the large cylinder (a is around 1801) (Sakamoto and Haniu, 1994). The

drag reductions observed for the near tandem arrangements is more understandable intuitively, because the placement

of a small cylinder in front of the large cylinder is effectively equivalent to attaching a streamlined nose to the large

cylinder, and a small cylinder at the back equivalent to attaching a streamlined tail to the large cylinder. The mean lift

on the large cylinder is negative when the cylinders are in near side-by-side arrangements and positive when the

cylinders are in near tandem arrangements. It is seen that the maximum absolute mean lift on the large cylinder occurs

when a is around 112.51. The absolute values of the mean lift on the large cylinder increase with the decrease of the gap

ratio G/D.

It can be seen from Fig. 10(c) that the mean drag on the small cylinder is insensitive to the values of the gap ratio

G/D. However, the angle a does affect the mean drag on the small cylinder very much. The mean drag is around 0.5 for

a ¼ 01. It increases with the increase of a until a is around 451 or 67.51. Further increase of a induces a decrease of the

mean drag on the small cylinder. The mean drag on the small cylinder is negative for a ¼ 801 in the computed cases of

G/D. From Fig. 10(d) it can be seen the effect of the gap ratio on the mean lift on the small cylinder is significant,
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Table 4

Computed force coefficients and the Strouhal number for a single cylinder

Reynolds number (Re) Mean drag ðC̄DÞ Mean lift ðC̄LÞ R.m.s. drag ðC0DÞ R.m.s. lift ðC0LÞ Strouhal number ðStÞ

5� 104 1.084 0 0.038 0.623 0.207

2.5� 104 1.044 0 0.035 0.605 0.217
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especially when the small cylinder is in the upstream side of the large cylinder (ao0 901). The mean lift on the small

cylinder is positive for ao1351 and negative for a41351. For G/D ¼ 0.05 and 0.1, the mean lift on the small cylinder is

zero when a ¼ 01; it increases sharply to large values when a is increased a little, as shown in Fig. 10(d). The maximum

mean lift on the small cylinder takes place when a is around 451 for most of the gap ratios investigated in the present

study.

Fig. 11 shows the distribution of the mean force coefficient vector plots C̄F ¼ ðC̄D; C̄LÞ, following the same approach

by Zdravkovich (1977). The force vectors given in Fig. 11 are plotted using the coordinates (G, a) that represent the
relative location of the small cylinder to the large cylinder. The force vectors plotted in Fig. 11(a) are those acting on

the large cylinder, while the force vectors shown in Fig. 11(b) are those acting on the small cylinder. It is seen that the

absolute value of the mean force on the large cylinder attains its maximum value when the small cylinder is very close to

the large one and the angle a is between 901 and 112.51. In the case of G/D ¼ 0.05, the absolute values of the force

vector at a ¼ 901 and 112.51 are 1.65 and 1.75, respectively, which are 1.52 and 1.62 times of the mean drag coefficient

on an isolated single cylinder, respectively. The existence of the small cylinder also affects the direction of the mean

force coefficient on the large cylinder. The maximum absolute value on the small cylinder occurs at G/D ¼ 0.05 and

a ¼ 451, and its value is about 2.96, which is 2.74 times of the mean drag on a single cylinder. The absolute value of the

force on the small cylinder approaches to zero when the small cylinder is located in the wake of the large cylinder.

Fig. 12 shows the variation of the time-averaged total drag coefficient ðC̄DEÞ and total lift coefficient ðC̄LEÞ on the

two-cylinder system, which are based on the so-called equivalent diameter ðDe ¼ Dþ d þ GÞ. The mean total drag

coefficients in Fig. 12(a) are normalized by the mean drag coefficients on an isolated cylinder at Re ¼ 5� 104 ðC̄D0Þ. It is

seen from Fig. 12(a) that the variation of the mean total drag coefficient is more or less the same to that of the mean

drag on the large cylinder. The mean total drag coefficient is about 0.5 times that on an isolated cylinder when a ¼ 01

and 1801. It increases when the small cylinder moves from the front or the rear of the large cylinder to its side. The total

drag coefficient increases when the gap ratio decreases. The total drag is larger than that on a single cylinder when a is

around 901 and G/D is very small (G/D ¼ 0.05 and 0.1 in Fig. 12(a)). It is seen that the variation of the mean total lift

coefficient is different from either that on the large or the small cylinder. The mean total lift coefficient attains its

maximum value when a is around 1351 or 157.51, and its minimum value when a is around 67.51. The magnitudes of the
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mean total lifts for the computed G/D are very small when the two cylinders are in a near side-by-side arrangement

(a ¼ 901). The absolute value of the mean total lift coefficient increases when the gap ratio G/D decreases. Fig. 13 shows

the variation of the time-averaged total drag coefficient ðC̄DAÞ and total lift coefficient ðC̄LAÞ on the two-cylinder

system, which are based on the sum of the two-cylinder diameter (DA ¼ D+d). The variation of the force coefficients

C̄DA and C̄LA with G/D and a reflect the effects of the small cylinder position on the dimensional total force because

they are based on a dimension independent of both a and G/D. Because DE4DA, the absolute value of the force

coefficients in Fig. 13 for a given G/D and a generally larger than their counterparts in Fig. 12. However, it can be seen

by comparing Figs. 12 and 13 that the variation of the C̄DA and C̄LA with a are quite similar to those of C̄DE and C̄LE ,

respectively. It can be seen from Figs. 12 and 13 that the mean total lift changes from a positive value sharply to a large

negative value when a increases from 22.51 to 451. A large reduction also occurs when a increases from 157.51 to 1801

for G/D ¼ 0.05 and 0.1.

Fig. 14 shows the variation of the root-mean-square (r.m.s.) drag and lift coefficients ðC0D and C0LÞ on the large

cylinder and those on the small cylinder with the position angle a. The r.m.s. drag coefficient on the large cylinder is

smaller than that of an isolated cylinder when the small cylinder is located in the front of or at the rear of the large

cylinder and larger when the small cylinder is at the side of the large cylinder. The r.m.s. lift on the large cylinder is

almost always smaller than that on an isolated cylinder. Significant r.m.s. lift reductions take place when the small

cylinder is placed either in the wake of or in front of the large cylinder. This is likely caused by the disturbances of the

small cylinder to the formation of the shear layers at the upstream face of the large cylinder and the interaction of the

shear layers in the wake region of the large cylinder, as discussed earlier on. The r.m.s. drag coefficient on the small

cylinder is much larger than that on an isolated cylinder at the same Reynolds number for a around 30–601 and

120–1501. From Fig. 14(d) it can be seen that the r.m.s. lift on the small cylinder is much smaller than that on an

isolated cylinder consistently, especially when the small cylinder is located in front of the large cylinder.

Fig. 15 shows the contours of the r.m.s. force coefficients ðC0F ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðC0DÞ

2
þ ðC0LÞ

2
q

Þ on each cylinder as the function of

the position of small cylinder centre. When a ¼ 451 and G/D ¼ 0.2, the C0F of the large cylinder attains its maximum

value. The existence of a small cylinder in the wake of a large one hinders the interaction of the shear layer behind the

large cylinder. This leads to the reduction of the r.m.s. force coefficient at large values of a as shown in Fig. 15(a).

However the interaction of the shear layer from the large cylinder causes the r.m.s. force coefficient on the small

cylinder to increase when the small cylinder is moved from the front to the rear of the large cylinder as shown in

Fig. 15(b). The maximum values of C0F on the small cylinder occurs when a ¼ 1351 and G/D ¼ 0.05.

Fig. 16 shows the r.m.s. of the total force coefficients on the two-cylinder system based on the equivalent diameter

(DE). The r.m.s. total drag coefficient and r.m.s. total lift coefficient are normalized by those on an isolated cylinder

C0D0 and C0L0
� �

at Re ¼ 5� 104, respectively. It is seen that the C0DE is larger than that of an isolated cylinder when a
between 901 and 112.51 for G/D ¼ 0.2 and 0.4, when a is between 451 and 112.51 for G/D ¼ 0.1, and when a between 451

and 901 for G/D ¼ 0.05. It is seen from Fig. 16(b) that C0LE is always smaller than that on an isolated cylinder,

regardless of the gap ratio G/D and the angle a. When a is around 1351, the r.m.s. total lift attains its maximum value of

about 0.5–0.65 times that on an isolated cylinder.

4.2.2. Pressure coefficient distributions

Fig. 17 shows the distribution of the time-averaged pressure coefficients ðC̄pÞ along the perimeter of the large cylinder

with the position angle of the small cylinder at two typical gap ratios investigated. It can be seen that the existence of the

small cylinder affects the mean pressure distribution on the large cylinder. By comparing Fig. 17(a) and (b), it can be

seen that the effect of the small cylinder is significant when the small cylinder is close to the large one, especially when

the small cylinder is located at about the side of the large cylinder (a ¼ 451, 901 and 1351 in Fig. 17). The pressure

distributions on the large cylinder surface are more asymmetric for the small value of G/D than those for the large value

of G/D. This may be one of the reasons for the large values of mean lift force on the large cylinder at small values of

G/D as shown in Fig. 10(b). Due to the existence of the smaller cylinder in front of the large one for a ¼ 01, the pressure

in front of the large cylinder (y ¼ 01) reduces much more, compared to that for an isolated cylinder. The reduction

of the pressure in front of the large cylinder leads to a smaller mean drag force on the large cylinder (as shown in

Fig. 10(a)).

Fig. 18 shows the time-averaged pressure coefficients along the perimeter of the small cylinder. It can be seen that the

pressure distribution on the small cylinder is more strongly affected by the location of the small cylinder than that on

the large cylinder. This is mainly because the approaching flow conditions for the small cylinder are very different when

it is located at different relative positions to the large cylinder. For example, at a ¼ 1801, the pressure coefficient on the

small cylinder is almost a negative constant, because the whole cylinder is immersed in the wake of the large cylinder. It

is also seen that the pressure distributions are symmetric when the small cylinder is located on the symmetric line at
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a ¼ 01 and 1801. For other cases, the pressure distribution is asymmetric. The pressure distribution is more asymmetric

when ao901 than that when a4901. This is the reason that the lift on the small cylinder for ao901 is larger than that

for a4901 (as shown in Fig. 10(d)). The stagnation point on the small cylinder is located at the lower side of the cylinder

as ao901. This leads to a positive lift force on the small cylinder.
4.2.3. Vortex flow patterns

It is expected that the shedding process from the cylinders is dependent on the location of the small cylinder. It is

observed that vortex shedding characteristics for the two-cylinder case are similar to those from a single cylinder when
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the gap between the cylinders is small. There is only one vortex shedding wake behind the cylinders in this case. The

critical gap ratio, below which the two cylinders behave as a single body, is dependent on the position angle a of the

small cylinder. Fig. 19 shows the power spectra of the total lift coefficient on the two cylinders for G/D ¼ 0.1 and

different values of a. For G/D ¼ 0.1, the lift on the two-cylinder bundle is found to oscillate at a single frequency, except

for a ¼ 901 and 112.51. It is quite obvious that there exists only one dominant vortex shedding frequency for these

position angles at this particular gap ratio. It can be seen from Fig. 19 that the power spectra have two sharp peaks for

a ¼ 901 and 112.51. This suggests that there exist two shedding processes for those two cases.
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Fig. 20 shows the instantaneous contours of vorticity (defined as os ¼ qu2=qx1 � qu1=qx2) behind the two cylinders

for G/D ¼ 0.1 and a ¼ 67.51 from dimensionless time Ut/D ¼ 150–156.5, which is about one shedding period. The solid

lines represent the positive vorticity and the dashed ones represent the negative vorticity. The wake behind the cylinders

is one of the typical characteristics of the vortex shedding from an isolated body. The shear layers from the upper side of

the small cylinder and that from the lower side of the large cylinder interact behind the cylinders, forming a typical

vortex street. The shear layers from the gap between the cylinders do not interact actively and the flow pattern behind

the gap nearly remains stationary during the shedding period. The Strouhal number based on the large cylinder

diameter of the vortex shedding is 0.148 for G/D ¼ 0.1 and a ¼ 67.51, which is smaller than that of a single cylinder.

Fig. 21 shows the time histories of the drag and lift coefficients on the two cylinders for G/D ¼ 0.1 and a ¼ 67.51. It can

clearly be seen that the drag and the lift coefficients on both two cylinders oscillate at a same frequency. This is referred

to as one-wake mode.

Fig. 22 shows the instantaneous vorticity contours behind the two cylinders for G/D ¼ 0.1 and a ¼ 112.51. The flow

patterns in Fig. 22 qualitatively agree with the observed ones in the experiments by Tsutsui et al. (1997). From

Fig. 22(a–c), one can see that the separated shear layer from the large cylinder reattaches to the rear face of the large

cylinder, forming a wall jet. It is observed that the flow in the rear of the gap is biased to the rear face of the large

cylinder. Tsutsui et al. (1997) called this phenomenon ‘‘reattachment’’. On the other hand, in Fig. 22(d) and (e), it is

observed that the separated shear layer through the gap detaches from the rear face of the large cylinder and form a free

jet. The reattachment re-occurs at the moment Ut/D ¼ 160 (Fig. 22(f)). It is observed that the reattachment of

the separated shear layer occurs intermittently. The intermittent reattachment of the shear layer affects the force on

the cylinders very much. Fig. 23 shows the time history of the force coefficients on the two cylinders for G/D ¼ 0.1

and a ¼ 112.51. It is obvious that the force coefficients in Fig. 23 oscillate in multiple frequencies. The force coefficients

are composed of a high-frequency component superposed on a low-frequency one, as observed in Fig. 19(e) and (f).

The lower values of the Strouhal number in Fig. 19(e) and (f) correspond to the frequency of the reattachment. The

shear layers from the large cylinder and those from the small cylinder interact with each other. The vortex

shedding behind the cylinders is affected by the shear layer behind the gap. This mode is referred to as the interaction-

shedding mode.
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Fig. 21. Time history of the force coefficients on the two cylinders for G/D ¼ 0.1 and a ¼ 67.51.
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It is observed that the one-wake mode occurs as the angle a is near 01 or near 1801 or when the small cylinder is

located in the front side of the large cylinder, whereas the interaction-shedding mode occurs as small cylinder is located

in the rear side of the large cylinder. The range of the angle a in which the interaction-shedding mode occurs is between
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901 and 112.51 for G/D ¼ 0.1. It is found that this range of the angle a is different for different gap ratio G/D. It is

observed that this range expands as the gap ratio G/D increases.

4.2.4. Shedding frequency

The Strouhal number of the lift on the two cylinders is studied. The variations of the Strouhal number of the lift with

the angle a for different gap ratio G/D are plotted in Fig. 24. The Strouhal number for the small, large and isolated

cylinders is based on their diameters correspondingly. For some cases, the power spectra of the lift may have several

sharp peaks (as shown in Fig. 19(e) and (f)). In these cases, all values of the Strouhal number are plotted in Fig. 24. For

ao67.51 and a4157.51, both the large cylinder and the small cylinder have a single Strouhal number, and the Strouhal

number of the large cylinder is twice of that of the small cylinder. This means that the lift on the large cylinder and that

on the small cylinder oscillate in an identical dimensional frequency and hence the two cylinders act as a single body in

these cases. In the cases of a between 901 and 1351, the fluctuation of the lift coefficient has multiple frequencies. This
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Fig. 22. Instantaneous vorticity contours behind the two cylinders for G/D ¼ 0.1 and a ¼ 112.51 (large cylinder Re ¼ 5� 104).
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means that the vortex shedding is in the interaction-shedding mode. It is interesting to see that the fluctuating lift

contains the frequency components that are much higher than that on an isolated single cylinder for G/D ¼ 0.2 and 0.4

and a between 901 and 1351.

4.3. Effect of the diameter ratio d/D

The effects of the diameter ratio d/D on the flow pattern and the forces on the cylinders are studied next. A constant

position angle a of 901 is employed in examining the effect of d/D. The computations are carried out for G/D ¼ 0.05,

0.1 and 0.2 and d/D ranging from 0.1 to 1.0 with an interval of 0.1. The Reynolds number based on the large cylinder

diameter is 5� 104. The mesh qualities in this section are similar to those of the previous section. The computational

time step for all of the cases is set to be 0.002.

4.3.1. Force coefficients on the cylinders

Fig. 25 shows the variation of the time-averaged drag and lift coefficients on the large cylinder with the diameter ratio

d/D for G/D ¼ 0.05, 0.1 and 0.2. The mean drag coefficients on the large cylinder are always larger than that on an

isolated cylinder for a ¼ 901. It is seen from Fig. 25 that the mean drag on the large cylinder increases with the increase

of d/D and the increase rate decreases with increasing G/D. For G/D ¼ 0.2 the mean drag on the large cylinder almost

does not change with the increase of d/D. The mean lift on the large cylinder is negative and its magnitude increases

with the increase of d/D. The absolute value of the lift on the large cylinder increases when G/D decreases. Fig. 26 shows

the variation of the time-averaged force coefficients on the small cylinder with d/D. With the increase of d/D, the mean

drag on the small cylinder decreases for small value of d/D and increases for large value of d/D. The mean lift on the

small cylinder is positive and its magnitude increases with the increase of d/D. By comparing Fig. 25(b) with Fig. 26(b),

it can be seen that the mean lift on the large cylinder and that on the small cylinder is repulsive at all cases of G/D and d/

D studied.

Fig. 27 shows the variation of the mean total force coefficients ðC̄DE and C̄LEÞ on the two-cylinder system with d/D

which are defined using the equivalent diameter. The total drag coefficients in Fig. 27(a) are normalized by the mean

drag coefficient ðC̄D0Þ on an isolated cylinder at Re ¼ 5� 104. For G/D ¼ 0.05 and 0.1, the mean total drag coefficient is

larger than that on an isolated cylinder, and it increases with the increase of d/D. For G/D ¼ 0.2, the mean total drag

coefficient is larger than that on an isolated cylinder for d/D40.6 but is almost identical to that on an isolated cylinder

for d/Do0.6. It is seen from Fig. 27(a) that the mean total drag attains its maximum value when the two cylinders are of

an identical diameter. The mean total lift coefficient is towards the large cylinder side ðC̄Lo0Þ for small values of d/D. It

increases with the increase of d/D and approaches zero when d/D ¼ 1.0. By comparing Figs. 25(b), 26(b) and 27(b), it

can be seen that the magnitude of the mean total lift coefficient is much smaller than that either on the large cylinder or

that on the small cylinder, especially for large value of d/D. This is mainly because the lift coefficients on the two

cylinders are repulsive.

Figs. 28 and 29 show the r.m.s. force coefficients on the large cylinder and those on the small cylinder, respectively.

The r.m.s. drag coefficient on the large cylinder approaches to that on an isolated cylinder, when d/D is very small. It
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increases with the increase of d/D for the range of G/D investigated. The r.m.s. drag coefficient on the small

cylinder decreases for small values of d/D and increases for large values of d/D with increasing d/D. The r.m.s. lift on the

large cylinder attains its maximum value when d/D ¼ 0.1, whereas that on the small cylinder is a maximum when

d/D ¼ 1.0. It can also be seen from Figs. 28(b) and 29(b) that the r.m.s. lift coefficient on the small cylinder is

much smaller than that on the large cylinder when d/Do0.5. Fig. 30 shows the r.m.s. total drag coefficient ðC0DEÞ and

r.m.s. total lift coefficient ðC0LEÞ based on the equivalent diameter on the two-cylinder system. The r.m.s. drag and

the r.m.s. lift coefficients are normalized by their counterparts on an isolated cylinder C0D0 and C0L0
� �

, respectively. It is

seen from Fig. 30(a) that the variations of the r.m.s. total drag coefficient with d/D may be different for different G/D.

The r.m.s. total drag increases with increasing d/D for G/D ¼ 0.05. For G/D ¼ 0.1 and 0.2, the r.m.s. total drag

decreases with increasing d/D for small values of d/D and increases for large values of d/D. The r.m.s. total drag

increases with increasing G/D for d/D between 0.1 and 0.3 and decreases for d/D between 0.6 and 1.0. The r.m.s. total

lift coefficient is always smaller than that on an isolated cylinder, regardless of d/D and G/D. It attains its maximum

value when d/D ¼ 0.1 in the computed three cases of G/D.

4.3.2. Vortex shedding frequency

The power spectra of the lift coefficient on the large cylinder and those on the small cylinder for G/D ¼ 0.2 and

a ¼ 901 are plotted in Figs. 31 and 32, respectively. It can be seen that for small value of d/D ¼ 0.1, the lift on two

cylinders oscillates at a single frequency. The Strouhal number of the lift of the small cylinder in Fig. 32(a) is 0.1 times of

that of the large cylinder in Fig. 31(a). For the medium value of d/D ¼ 0.3, the fluctuating lift on the large cylinder has a

single sharp peak, whereas the spectra of the lift on the small cylinder has multiple sharp peaks. The fluctuating lift on

the small cylinder contains components that are of higher frequencies than those on an isolated cylinder. For the large
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value of d/D ¼ 0.9, the lifts on both the large and small cylinders oscillate with multiple frequencies. It is observed that

the flow patterns for small values of d/D are in the one-wake mode, whereas the flow patterns for medium and larger

values of d/D are in the interaction-shedding mode as discussed in Section 4.2.3.
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Fig. 28. Variation of the r.m.s. force coefficients on the large cylinder with d/D (Re ¼ 5� 104).
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Fig. 33 shows the variation of the Strouhal number of the fluctuation lift coefficient as a function of the diameter

ratio for two gap ratios and a ¼ 901. It is seen that the lift coefficients of both cylinders oscillate with a single frequency

for small values of d/D (d/Dp0.3 in Fig. 33(a) and (d)/Dp0.1 in Fig. 33(b)), and the Strouhal number of the small

cylinder is d/D times that of the large cylinder. From Fig. 30(a) it can be seen that, when the d/D becomes large, the lift



ARTICLE IN PRESS

0.0

0.4

0.8

1.2

d/D=0.1

0.0

0.1

0.2

0.3

d/D=0.3

0.00 0.25 0.50
fd/U

0.00 0.25 0.50
fd/U

0.00 0.25 0.50
fd/U

0.0

0.2

0.4

0.6
d/D=0.9

(a) (b) (c)

Fig. 32. Power spectra of the lift coefficient on the small cylinder for G/D ¼ 0.2 and a ¼ 901 (Re ¼ 2.5� 104).

0.00 0.25 0.50
fD/U

0

200

400

600

d/D=0.1

0.00 0.25 0.50
fD/U

0.00 0.25 0.50
fD/U

0

50

100

150

d/D=0.3

0.0

0.5

1.0

1.5

d/D=0.9

(a) (b) (c)

Fig. 31. Power spectra of the lift coefficient on the large cylinder for G/D ¼ 0.2 and a ¼ 901 (Re ¼ 5� 104).

0.0

0.1

0.2

0.3

S t

G/D=0.05

0.0

0.1

0.2

0.3

S t

G/D=0.2

d/D

0.0 0.2 0.4 0.6 0.8 1.0

d/D

0.0 0.2 0.4 0.6 0.8 1.0

(a) (b)

Fig. 33. Variation of Strouhal number with d/D for a ¼ 901: � , large cylinder (Re ¼ 5� 104); J, small cylinder (Re ¼ 2.5� 104);

- - - - -, isolated cylinder (Re ¼ 5� 104).

M. Zhao et al. / Journal of Fluids and Structures 23 (2007) 59–83 81
on the large cylinder has two nondimensional frequencies for most values of d/D, with one being smaller and the other

larger than the Strouhal number of a single isolated cylinder. At the gap ratio G/D ¼ 0.2, the lift on the large cylinder

and that on the small cylinder fluctuate at several frequencies for larger values of d/D.
5. Conclusions

Vortex shedding flow past two circular cylinders of different diameters is studied numerically. The computations are

carried out in the sub-critical Reynolds number regime. The numerical model is first verified by the experimental data.
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Then the model is applied to study the effects of the small cylinder on the flow pattern and the force coefficients on the

cylinders. The flow is calculated for a broad range of gap and diameter ratios. The major results can be summarized as

follows.
1.
 Vortex shedding behind the cylinders can be classified into two modes. One is the one-wake mode in which the two

cylinders behave as a single body. In the one-wake mode, the gap between the two cylinders has little effect on the

shedding process and there is only one wake behind the cylinders. This mode is found when the two cylinders are in a

near tandem arrangement or the small cylinder is located in the front upper side of the large cylinder. The other

mode is the interaction-shedding mode, in which the shedding behind the cylinders is strongly affected by the shear

layers behind the gap. This mode is found when the small cylinder is located in the rear upper side of the large

cylinder for the cases of gap ratios studied. It is found that the range of the angle a in which the interaction-shedding

mode occurs expands as the gap ratio G/D increases.
2.
 The lift on the large cylinder and that on the small cylinder oscillate at a single dimensional frequency when the flow

is in the one-wake mode. When the flow is in the interaction-shedding mode, the spectra of the lift on the cylinders

have two or more sharp frequency peaks.
3.
 The time-averaged mean drag on the large cylinder attains the maximum value when a is around 901 and the mean

drag on the small cylinder attains its maximum value when a is around 601. The drag on both cylinders is smaller

than that on an isolated cylinder when the two cylinders are in near tandem arrangement. A negative drag on the

small cylinder is also observed when the small cylinder is directly behind the large cylinder. The maximum mean lift

on the large cylinder occurs at a about 1201 and is negative. The maximum mean lift on the small cylinder occurs at a
about 451 and is positive. The variation of the mean total drag coefficient on the two-cylinder system (based on the

equivalent diameter) with a is very similar to that of the mean drag on the large cylinder. It is about 0.5 times that on

an isolated cylinder when a ¼ 01 and 1801. It increases when the small cylinder moves from the rear or the front to

the side of the large cylinder and attains its maximum value when a is around 901. The variation of the mean total lift

is different from either that of the large cylinder or that of the small cylinder. It approaches zero at a ¼ 01, 901 and

1801, and attains its maximum value when a is around 67.51 and 157.51.
4.
 The r.m.s. drag coefficients on both the large cylinder and that on the small cylinders are smaller than that on an

isolated cylinder when the two cylinders are in near tandem arrangement. The r.m.s. total drag coefficient on the

two-cylinder system is larger than that on an isolated cylinder when a is around 901 and smaller when a is around 01

or 1801. The r.m.s. lift coefficients of the large and the small cylinder and the r.m.s. total lift coefficients are smaller

than that on an isolated cylinder.
5.
 The effect of the diameter ratio is investigated for cases of a ¼ 901. The mean drag on the large cylinder increases

and the mean lift on the large cylinder decreases with increasing d/D. The mean drag coefficient on the large cylinder,

the small cylinder and the two-cylinder system is larger than that on an isolated cylinder. The mean total lift on the

two-cylinder system is much smaller than that on either the large or the small cylinder, especially at large values of

d/D. The r.m.s. drag on the large cylinder increases and the r.m.s. lift on the large cylinder decreases with increasing

d/D. The r.m.s. total drag coefficients may be larger or smaller than that on an isolated cylinder, depending on d/D

and G/D. The r.m.s. total lift coefficient is always smaller than that on an isolated cylinder. It is found that the flow is

in the one-wake mode for small values of d/D and in the interaction-shedding mode for large values of d/D.
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